
Ray Tracing with the Single Slab Hierarchy

Martin Eisemann, Christian Woizischke, Marcus Magnor

Computer Graphics Lab, TU Braunschweig
Email: {eisemann,magnor}@cg.tu-bs.de, christian@woizischke.de

Abstract

Bounding volume hierarchies have become a very
popular way to speed up ray tracing. In this pa-
per we present a novel traversal and approximation
scheme for bounding volume hierarchies, which is
comparable in speed, has a very compact traversal
algorithm and uses only 25% of the memory, com-
pared to a standard bounding volume hierarchy.

1 Introduction

Ray tracing is one of the fundamental methods in
computer graphics for image synthesis and has been
studied for more than three decades. While ray trac-
ing has been used mainly for offline rendering in the
early days, recent advances in this field allow for
real-time rendering as well [19, 27].

The biggest gain in efficiency is achieved by us-
ing acceleration data structures which lower the
complexity of tracing rays from linear to logarith-
mic on the average. For a long time, kD-trees were
supposed to be the best choice for these acceleration
data structures [27, 22]. But recently Bounding Vol-
ume Hierarchies (BVH) and hybrids have become
increasingly more popular, due to their versatility
and lower memory footprint [15, 25, 10, 28, 9].

However for rather complex scenes with millions
of triangles, even when using BVHs, memory con-
sumption can become a limiting factor. Approxi-
mation schemes exist [17, 3], but usually include a
computational overhead.

In this paper we present a new hierarchical accel-
eration data structure, which is comparable in per-
formance to highly optimized BVH ray tracers, but
that uses only 25% of the memory of a BVH, allow-
ing for more complex scenes to be rendered. We
will show that this data structure can be easily in-
tegrated into existing ray tracing systems and has a
very simple and efficient traversal algorithm simi-
lar to kD-trees, without any of the drawbacks from

previous hybrid schemes.
The remainder of the paper is organized as fol-

lows. In Section 2 we give a short overview of
common acceleration data structures to speed up ray
tracing. We assume that the reader is familiar with
the basic principles of ray tracing [8, 24, 20]. Sec-
tion 3 introduces our new acceleration data struc-
ture, whose performance is evaluated in Section 4.
We conclude our paper in Section 5.

2 Related Work

It is obvious that intersecting every ray with every
object in the scene is barely efficient. Accelera-
tion data structures can be used to exclude most of
the objects from actual intersection testing. Large
amounts of research has been done on finding ef-
ficient representations for these acceleration data
structures for ray tracing. Good surveys can be
found in [1, 24, 31] and [30]. For brevity we can
only mention some seminal and recently published
work in this field.

The broader class of these data structures can be
divided into two main classes:Space partitioning
andobject lists partitioning, which we will briefly
describe in the following.

2.1 Space Partitioning

The space of the scene, containing all objects, is
subdivided into disjoint volume elements (voxels).
Efficiency is achieved by testing the ray in an in-
telligent way against these elements and the con-
tained geometry, preferably in a front-to-back order,
if the element was pierced by the ray. While able
to achieve high performance, some disadvantages
are inherent. Multiple references to the same object
are needed if it overlaps with more than one vol-
ume element. This requires an intelligent mailbox-
ing to prevent multiple intersection tests with the
same object and induces larger memory footprints.

VMV 2008 O. Deussen, D. Keim, D. Saupe (Editors)

Space partitioning schemes are also generally more
complicated to update, e.g., if dynamically chang-
ing scenes need to be rendered.

Uniform Grids by Fujimotoet al. [5] divide the
scene into regular, or uniform, disjoint but con-
nected voxels. Using a fast 3DDDA algorithm a ray
can be sent through this grid and one needs to test
only the objects contained inside the pierced voxels.
Its simplicity is also attractive for ray tracing dy-
namic scenes [29] as the creation of the grid can be
achieved by fast rasterization of the objects. How-
ever, this scheme suffers severely from traversing
empty voxels if the scene contains irregularly dis-
tributed objects. This can be alleviated by introduc-
ing hierarchical grids or macro cells, but switching
between these levels is expensive. Grids are hardly
usable for more complex scenes, as these require
finer grids in order to limit the number of objects
in the voxels, which on the other hand introduces
a larger traversal overhead plus very high memory
consumption.

Octrees have been introduced as a space parti-
tioning scheme by Glassner [7]. The scene is en-
closed by a voxel which is recursively subdivided
into eight disjoint child nodes of equal size. This ac-
celeration scheme adapts better to the scene content
than the uniform grid. But adaptation and rendering
is comparably slow to other acceleration data struc-
tures. Therefore octrees are usually only used for
special ray tracing applications as in [14], but sel-
domly in real-time ray tracers for arbitrary scenes.

Binary Space Partitioning schemes recursively
subdivide space into two half-spaces using arbitrary
planes [2, 12, 6]. If the splitting planes are cho-
sen carefully, this effectively reduces the drawbacks
of the formerly mentioned acceleration data struc-
tures. However, it is not known how to choose these
planes in an optimal way.

kD-trees restrict the splitting planes to be orthog-
onal to the world coordinate axes. This way traver-
sal becomes easier, less computationally intensive
and numerically more robust. Even though kD-
trees are arguably the fastest way to ray trace static
scenes, [27, 31, 26, 21], they suffer from the lack
of adaptability for dynamic scenes, plus they in-
cur an a-priori unknown memory footprint. Even
though single nodes in a kD-tree allow for a very

compact representation, overall memory consump-
tion can become several times as high as object lists
partitioning schemes [25].

2.2 Object Lists Partitioning

Instead of subdividing space, one could also sub-
divide the objects into different, possibly overlap-
ping, bounding volumes (BV). Rays are first tested
against these BVs and only if a hit is found, then
they are tested against the contained geometry. Ef-
ficiency is gained, as testing a ray against these BVs
is simpler than the triangle tests.

Bounding Volume Hierarchies , first proposed
by Rubin and Whitted [23] and Kay and Kajiya
[13], carry this idea further by creating a hierar-
chy of bounding volumes. The bounds of every
node in this tree are chosen so that it exactly bounds
all the nodes in the corresponding subtree and ev-
ery leaf node exactly bounds the contained geom-
etry. If a ray misses a BV in this tree structure,
the whole subtree can be skipped. Tracing rays
in front-to-back order becomes a little bit more
difficult with BVHs when compared to space par-
titioning schemes, but the advantages often out-
weigh the drawbacks: memory requirements are
always directly proportional to the number of ob-
jects in the scene, each object is referenced exactly
once and consequently no mailboxing is necessary.
BVHs are efficient (it has been shown by several
authors [10, 15, 28, 9], that BVHs can become al-
most as efficient as kD-Trees) and versatile when it
comes to updating a BVH, e.g. for dynamic scene
changes. These advantages have made them very
attractive for real-time ray tracing during the last
years [28, 9, 11, 15].

Memory Reduction Even though BVHs already
need only a relatively low amount of memory com-
pared to other acceleration data structures (kD-trees
may need up to4× the amount of a BVH [25, 9]),
several approaches exist which reduce the memory
consumption even further. Mahovsky and Wyvill
[17] investigated a hierarchical scheme for encod-
ing BVHs that reduces the storage requirements by
63%-75% but introduces a computational overhead
which can be alleviated by tracing bundles of rays,
if possible. Clineet al. [3] take a similar approach.
They also use a hierarchical encoding scheme, com-

pressing a node to 12 bytes, plus a high branching
factor of 4 and implicit encoding of the child pointer
due to a heap like data structure, typically a BVH
node needs 32 bytes. Their approach is slower than
a standard BVH and is limited to an object based
median split technique for creating the BVH, which
is known to be one of the slowest techniques for ray
tracing.

Hybrid techniques have been thoroughly investi-
gated during the last years which try to combine the
benefits of spatial and object list partitioning. Most
of them are a deviation of the Bounding Slab Hier-
archy by Kay and Kajiya [13]. Originally at least
six bounding planes were used (the standard BVH
uses this scheme, where the bounding planes are
perpendicular to the world coordinate axes), so that
they formed a closed hull around the object. Most
hybrid approaches store a set of two parallel planes
that partition the current node’s bounding volume
into two, potentially overlapping, halves. By sav-
ing the current active ray interval, one is able to
estimate a hit or miss of a ray with these sparsely
represented bounding volumes. The data structure
looks like a kD-Tree but still has all the benefits
from a BVH. This kind of hybrid was independently
developed by several researchers [25, 10, 32, 33].
While Wächteret al. [25] focused on fast construc-
tion of their bounding interval hierarchy, Woopet
al. [32] showed a hardware implementation of a
similar structure, called b-kD tree. The DE-tree in
[33] is very similar to the b-kD tree but includes
a wide object isolation to prevent larger objects
from plugging the hierarchy, by keeping them at
higher levels. Havranet al. [10] adapted a ver-
sion of the skd-tree, originally proposed by Ooiet
al. [18], which is similar to the one proposed in
[25]. As most of the other approaches have difficul-
ties dealing with empty spaces and need to include
empty nodes, Havranet al. extended them to H-
trees, which is an skd-tree with an additional node
type, the bounding node, a simple six-sided bound-
ing volume, to cut away empty spaces. Even though
this solves the empty spaces problem, it complicates
the traversal and creation of the hierarchy, as one
has to deal with different kinds of nodes.

In the following we present an approach that does
not have this empty spaces problem as we always
carve away the side which is most beneficial for the
surface reduction of the nodes, plus due to the use

of a single type of node, the traversal is much sim-
pler. It uses only 8 Bytes per node, i.e. 25% of the
memory needed by a standard BVH without intro-
ducing any efficiency drawbacks. Often it is even
faster than a standard BVH.

3 The Single Slab Hierarchy

We propose a simple yet efficient acceleration data
structure for ray tracing which offers favorable
speed and very low memory consumption. The sin-
gle slab hierarchy (SSH) is a binary object partition-
ing scheme, resulting in a binary tree. Similar to
BVHs a ray traverses this tree in a top-down fash-
ion. If it does not intersect one of the nodes, the
whole subtree can be skipped (see Sect. 3.4). In-
stead of representing BVs with all six planes we
make use of the enclosing characteristics of BVHs
to conservatively estimate a BV by representing it
with only one bounding plane. One can think of
this as carving away parts of the BV in every subdi-
vision step.

3.1 Properties of BVHs

The reason why BVHs are effective is that when-
ever a ray~r = ~o + t · ~d misses the bounding box of
a node, the complete subtree can be skipped during
the traversal. This enclosing property can be use-
ful in two ways for our SSH. First, we can define
active ray segmentstin andtout where a ray enters
and leaves the bounding box. Given two BVsB1

andB2 and corresponding ray segmentst1in, t1out,
t2in andt2out for an arbitrary ray which pierces both
BVs thent1in ≤ t2in ≤ t2out ≤ t1out if B1 encloses
B2, see Fig.1. This property is essential for any hy-
brid BVH method, which approximates a node by
less than its six sides.

Another beneficial property concerning effi-
ciency is that the BVs of the children of a node will
share some of the bounding slabs with its parent.
In fact, one can prove that at least six or more out
of the twelve planes by which the two children are
defined, will coincide with the bounds of the par-
ent node. Testing these against a ray is redundant.
Interestingly if a bounding plane of a child node is
not equal to the same plane of its parent, it will be
in its sibling. Or in other words, every plane which
bounds the ancestor node will also bound at least
one of its child nodes. So if one tries to approximate

t1in

t1out

t2in

t2out

Figure 1: The enclosing property of BVHs ensures
that a ray always pierces first, or at least at the same
time the ancestor node before it can intersect the
children, and will always leave the children nodes
before or at the same time it leaves the ancestor
node.

BVs by representing them with less than its usual
six planes it is crucial not to choose the same bound-
ing planes for both children. Otherwise redundant
intersection tests are the consequence. Methods like
[32, 10, 33] do not pay attention to this or do not
provide the possibility to change it.

3.2 Data Structure

Instead of storing the complete six-sided Bounding
Box for every node in our tree, the idea of the sin-
gle slab hierarchy is to use only one single plane
perpendicular to either thex, y or z-axis. In pre-

#pragma a l i g n (8)
s t r u c t SSHNode{

f l o a t p lan e ;
union{

i n t f i r s t C h i l d N o d e I D ; / / i n n e r nodes
i n t f i r s t T r i a n g l e I D ; / / l e a f nodes
/ / b i t 0 . . 1 : a x i s (x , y , z) or l e a f
/ / b i t 2 : i n t e r i o r l e f t or r i g h t
/ / b i t 3 . . 4 : t r a v e r s a l a x i s

}
} ;

Figure 2: 8 byte representation of the SSH node.

vious hybrid approaches the axis of the splitting
plane, used for subdividing the object list into the
two child nodes, was the same axis as the one used
for bounding the nodes. As described in 3.1, we
observed that restricting ourselves to this behaviour
prohibits flexibility and therefore efficiency, as this
might lead to problems with empty spaces where ei-
ther empty nodes [25] or special nodes [10] have to
be inserted in order to deal with this. Havranet al.
reported performance loss of more than an order of
magnitude if one does not deal with these cases. We
define an outer and inner half space for each of the
bounding planes, to define, on which side the inte-
rior of the node is placed. This gives us the needed
flexibility to carve away empty space from any side
of the bounding box. Therefore no additional nodes
need to be added. This is also depicted in Fig. 3.

A complete SSH node contains the position of the
bounding plane, a pointer to a pair of children and
some additional flags. It can be represented with
just 8 bytes (see Fig. 2). Note the resemblance to
kD-Tree nodes [26].

We use the lower two bits to indicate the axis (00:
x, 01: y, 10: z) to which the bounding plane is per-
pendicular to or whether it is a leaf node (case 11).
One bit indicates whether the included geometry is
to the left or right of the bounding plane; the other
side is empty respectively. We also use two addi-
tional bits to save the traversal axis to define which
node a ray should visit first during traversal, accord-
ing to its signs. For a four byte integer we still have
27 bits left for encoding the index, so up to134 mil-
lion triangles are encodable or even more if we al-
low more than one triangle per leaf node, note that
this number has to be predefined before construc-
tion and is not saved explicitly per leaf node.

3.3 Construction of the Hierarchy

Our construction is in fact quite similar to BVH
construction methods. All the usual construction
schemes can be applied such as spatial median cut
or surface area heuristic (SAH). Therefore our SSH
is also a binary tree. To find the optimal bounding
plane for a node we make use of the SAH [16]. The
probabilityP of an arbitrary ray~r, piercing the root
nodeB0, to hit an interior nodeBi is exactly the
ratio of the surface areas

P (~r ∩ B
i|~r ∩ B

0) =
S(Bi)

S(B0)
(1)

splitting plane splitting plane

bounding planes

splitting plane

bounding planes

(a) (b) (c)

Figure 3: Bounding Plane adjustment. (a) Ancestor volume containing all objects is split along the x-axis
(splitting plane depicted by the dashed line). (b) Resulting volumes if splitting and bounding planes are set
to the same axis. (c) Our approach can choose the best plane for eachof the children, resulting in smaller
bounding boxes. The approximated bounding volumes in gray and the chosen bounding planes in blue and
orange are shown slightly displaced for better readability.

To find the optimal bounding plane for a node, we
use the calculated bounds of its ancestor node. For
every side of the BV we set the bounding plane as
tight as possible to the included objects. We then
calculate the new surface area and keep that bound-
ing plane which reduces the surface area the most
(see Fig. 3 and 5).

3.4 Traversal

Intersecting a ray with the single slab hierarchy
resembles the traversal of a BVH, but with the
complexity of kD-Tree traversal. In each traversal
step we maintain the active ray segment[tin, tout],
which depicts the entry and exit point of the ray and
the current node. This is first initialized to[0,∞),
then clipped to the scene bounding box and updated
during traversal. For each traversed node we sim-
ply calculate the distance to its bounding plane and
compare it to the active ray segment. Depending on
the interior bit, which encodes on which side of the
bounding plane the geometry is, and the ray direc-
tion we can create a very simple intersection algo-
rithm (see Fig. 4).

We increase the likelihood of traversing the chil-
dren in front-to-back order by including an ordered
traversal scheme, as proposed in [17], which de-
termines the order in which the children of a node
should be tested. We also implemented the algo-
rithm presented in Fig. 4 as an iterative version, by
using a stack to save the nodes and ray segments.

3.5 Extension to dynamic scenes

In fact, our single slab hierarchy shares many prop-
erties with BVHs. Therefore we can easily refit our
single slab hierarchy to adapt it to changes in the
geometry. This can be done in a similar way as
described in [32] or [28]. A simple bottom-up ap-
proach can be applied using trivial min/max opera-
tions to adapt the bound of the nodes. The structure
of the hierarchy remains unchanged. This is suf-
ficient for most coherent animations, e.g. skinned
meshes.

To handle arbitrary movements one could easily
adopt the method of Izeet al. [11] where the BVH is
refitted while one core of a multi-core PC constantly
regenerates the hierarchy and switches it once it is
finished.

4 Results and Discussion

We implemented our presented SSH scheme into
a SIMD Ray Tracer which uses2 × 2-ray-bundle-
tracing to exploit ray coherence and a BVH-based
ray tracer following [15] for comparison, includ-
ing 2 × 2-ray-bundle-tracing, a spatial median cut
scheme for construction, ordered traversal and us-
ing 32 byte of data per node.

Both are state-of-the-art and achieve interactive
frame rates on a single desktop PC. For our test
scenes we evaluated only the first intersection and
used a simple eyelight shader. We are aware of

/ / r e v e r s e i s t r u e i f t h e ray d i r e c t i o n i s n e g a t i v e ,
/ / t h i t i s t h e d i s t a n c e t o t h e c u r r e n t l y c l o s e s t i n t e r s e c t i o n
bool i n t e r s e c t S S H (Ray& ray , mask r e v e r s e [3] , SSHNode∗ node ,

f l o a t& t h i t , f l o a t& t n e a r , f l o a t& t f a r)

i n t a x i s = node−>g e t S l a b A x i s () ;
f l o a t t = (f l o a t (node−>p lan e) − ray . o r i g i n [a x i s]) / ray . d i r [a x i s] ;

i f (node−>g e o m e t r y I s L e f t ()){
t n e a r = (r e v e r s e [a x i s]| (t <= t n e a r)) ? t n e a r : t ; / / i n c r e a s e t n e a r
t f a r = (r e v e r s e [a x i s] & (t< t f a r)) ? t : t f a r ; / / d e c r e a s e t f a r

}
e l s e {

t n e a r = (r e v e r s e [a x i s] & (t>t n e a r)) ? t : t n e a r ; / / i n c r e a s e t n e a r
t f a r = (r e v e r s e [a x i s] | (t>= t f a r)) ? t f a r : t) ; / / d e c r e a s e t f a r

}

i f ((t n e a r > t f a r) | | (t n e a r > t h i t)){
re turn f a l s e ;

}

i f (node−>i s L e a f ()){
re turn i n t e r s e c t geometry ;

}

t r a v e r s e c h i l d r e n ;

Figure 4: Traversal scheme for the single slab hierarchy.

methods which exploit ray coherence to a higher
degree, as in [28, 22], but for a fairer comparison,
we did not use them. For testing we used a PC
equipped with an Intel Core 2 Quad Q6600 2.4GHz.
Only one core was used for the time measurements.
Our current subdivision scheme is a spatial median
cut [24, 15] which provides good rendering perfor-
mance for almost all scenes. The nodes are subdi-
vided until each leaf node consists of only one tri-
angle. Note that the structure of the BVH and the
SSH is essentially the same, only the representation
of the nodes has been changed.

We have tested this system on scenes with vary-
ing complexity to measure the performance and
memory consumption of our approach. As one
can see from Table 1 the performance of the SSH
is comparable to a state-of-the-art BVH ray tracer,
even faster in some cases, while only 25% of the
memory is needed for the acceleration data struc-
ture. This memory saving is important because with
even more complex models the scene might not
fit into main memory anymore if using kD-Trees
or BVHs. Built times are slightly higher for the
SSH as we need to search for the best bounding

plane, but this is rather negligible. The number of
traversed nodes and triangle intersections is larger
for the SSH as only approximated BVs are used in
essence, but this is alleviated by the simpler traver-
sal algorithm. Only two times more nodes are tra-
versed with the SSH than with a complete BVH, but
the intersection test is approximately six times less
expensive. Due to the approximation more trian-
gles have to be intersected, but as one can see this
is usually only one more per ray. Results are listed
in Table 1.

5 Conclusion

We have presented a new acceleration data structure
with applications to real-time ray tracing. By relax-
ing the standard bounding volumes to a single slab
we achieved memory savings of 75% compared to
standard BVHs without loss in efficiency. And even
more sophisticated variations, like the Bounding In-
terval Hierarchy [25] use at least 50% more memory
compared to our approach. This allows for render-
ing of much more complex models without using
out-of-core techniques.

Method NT NI TC TR s(TR) Mem

Scene - Power Plant - 12,748,510 triangles,640 × 480

BVH 43.55 4.24 28.83s 3.31s 1.0× 778.11MB

SSH 80.23 5.34 28.9s 2.73s 1.22× 194.53MB

Scene - Happy Buddha - 1,087,716 triangles,640 × 480

BVH 6.45 0.63 1.93s 0.54s 1.0× 66.39MB

SSH 14.14 1.53 1.98s 0.59s 0.91× 16.60MB

Scene - Dragon - 871.414 triangles,640 × 480

BVH 10.47 0.95 1.55s 0.84s 1.0× 53.19MB

SSH 23.21 2.11 1.57s 0.89s 0.94× 13.30MB

Scene - Fairy 1st frame - 174,117 triangles,640 × 480

BVH 26.52 2.53 0.30s 2.06s 1.0× 10.63MB

SSH 45.51 4.23 0.31s 1.70s 1.21× 2.66MB

Scene - Toys - 11.141 triangles,640 × 480

BVH 29.57 1.31 0.02s 2.08s 1.0× 0.68MB

SSH 46.85 3.24 0.02s 1.57s 1.33× 0.17MB

Scene - Bunny - 69.451 triangles,640 × 480

BVH 8.77 0.55 0.09s 0.66s 1.0× 4.24MB

SSH 18.01 1.31 0.10s 0.65s 1.03× 1.06MB

Table 1: Comparison of our new technique (SSH) with a BVH implementation following [15], using a
simple shader and2 × 2 (SSE accelerated) ray bundles. Measurements have been made on anIntel Core 2
Quad Q6600 2.4GHz with 4GB of main memory. Only one core was used for the time measurements.NT

is the average number of traversed nodes per ray,NI is the average number of ray-object intersections per
ray,TC is the total time needed for construction of the hierarchy,TR is the total time needed for traversal,
s(TR) is the speedup achieved by the SSH with respect to the BVH, Mem is the memory usage of the
acceleration data structures in megabytes, excluding the triangle data.

void createSSH (T r i a n g l e L i s t t r i s ,
AABB pa ren t ,
SSHNode& node){

AABB bounds (t r i s) ; / / bounding box
f l o a t b e s t S u r f a c e = HUGEVAL;
i n t b e s t S i d e = 0 ;
f o r a l l (s i d e s o f t h e AABB){

AABB temp = p a r e n t ;
temp . s i d e = bounds . s i d e ;
i f (s u r f a c e (temp)< b e s t S u r f a c e){

b e s t S u r f a c e = s u r f a c e (temp) ;
b e s t S i d e = s i d e ;

} }
node . bound ingP lane = bounds . b e s t S i d e ;
i f (t r i s . s i z e () < n){

c rea teLea fNode () ; re turn ; }
T r i a n g l e L i s t l e f t T r i s , r i g h t T r i s ;
s u b d i v i d e (t r i s , l e f t T r i s , r i g h t T r i s) ;
/ / s u b d i v i d e u s i n g a common scheme ,
/ / l i k e SAH or median−c u t
p a r e n t . b e s t S i d e = bounds . b e s t S i d e ;
c reateSSH (l e f t T r i s , pa ren t ,

node . f i r s t C h i l d N o d e I D) ;
c reateSSH (r i g h t T r i s , pa ren t ,

node . f i r s t C h i l d N o d e I D + 1) ;
}

Figure 5: Creation scheme for the single slab hier-
archy.

Looking at the statistics in Table 1, the current
bottleneck is the slightly more incoherent memory
access when compared to standard BVHs, as more
nodes need to be accessed. We strongly believe that
this problem will disappear with newer hardware ar-
chitectures.

For future work we intend to implement more so-
phisticated subdivision schemes, like the SAH [16]
as well as acceleration schemes [22, 28] to find the
first intersections and a GPU version of our ray
tracer [9] to improve rendering performance even
further. We would also like to try discretization
schemes [17] or 4-ary BVH [4] to save even more
memory. As the single slab hierarchy is relatively
similar to BVHs in its structure, current techniques
for ray tracing of dynamic scenes [30] could be
adapted as well.

6 Acknowledgements

Our thanks go to the University of North Carolina
at Chapel Hill, the Stanford University and the Uni-
versity of Utah for providing us with the 3D models.

References

[1] J. Arvo and D. Kirk. A survey of ray tracing
acceleration techniques. In Andrew S. Glass-
ner, editor,An Introduction to Ray Tracing,
pages 206–208. Academic Press, 1989.

[2] J.L. Bentley. Multidimensional binary search
trees used for associative searching.Com-
munications of the ACM, 18(9):509–517,
September 1975.

[3] D. Cline, K. Steele, and P. Egbert.
Lightweight Bounding Volumes for Ray
Tracing. journal of graphic tools, 11(4):61–
71, 2006.

[4] H. Dammertz, J. Hanika, and A. Keller. Shal-
low bounding volume hierarchies for fast simd
ray tracing of incoherent rays. Computer
Graphics Forum (Proceedings of EGSR 2008),
27(4), 2008.

[5] A. Fujimoto, T. Tanaka, and K. Iwata. Arts:
Accelerated ray-tracing system.IEEE Com-
pututer Graphics and Applications, 6(4):16–
26, April 1986.

[6] D. S. Fussell and K. R. Subramanian. Fast ray
tracing using K-d trees. Technical Report CS-
TR-88-07, Austin, TX, USA, 1 1988.

[7] A. S. Glassner. Space subdivision for fast ray
tracing. IEEE Computer Graphics and Appli-
cations, 4(10):15–22, October 1984.

[8] A. S. Glassner, editor.An Introduction to Ray
Tracing. Academic Press, first edition, 1989.

[9] J. Günther, S. Popov, H.-P. Seidel, and
P. Slusallek. Realtime ray tracing on GPU
with BVH-based packet traversal. InProceed-
ings of the IEEE/Eurographics Symposium on
Interactive Ray Tracing 2007, pages 113–118,
September 2007.

[10] V. Havran, R. Herzog, and H.-P-Seidel. On
Fast Construction of Spatial Hierarchies for
Ray Tracing. InIEEE/Eurographics Sympo-
sium on Interactive Ray Tracing 2006, 2008.

[11] T. Ize, I. Wald, and S.G. Parker. Asyn-
chronous bvh construction for ray tracing dy-
namic scenes on parallel multi-core architec-
tures. InProceedings of the 2007 Eurograph-
ics Symposium on Parallel Graphics and Visu-
alization, pages 101–108, 2007.

[12] M. R. Kaplan. Space tracing a constant time
ray tracer. InState of the Art in Image Synthe-
sis (Course Notes on ACM SIGGRAPH ’85,

volume 11, pages 149–158, July 1985.
[13] T. L. Kay and J. T. Kajiya. Ray tracing com-

plex scenes. InSIGGRAPH ’86: Proceedings
of the 13th annual conference on Computer
graphics and interactive techniques, pages
269–278, New York, NY, USA, 1986. ACM
Press.

[14] A. Knoll, I. Wald, S.G. Parker, and C.D.
Hansen. Interactive Isosurface Ray Tracing
of Large Octree Volumes. InProceedings of
the 2006 IEEE Symposium on Interactive Ray
Tracing, pages 115–124, 2006.

[15] C. Lauterbach, S.-E. Yoon, D. Tuft, and
D. Manocha. RT-DEFORM: Interactive Ray
Tracing of Dynamic Scenes using BVHs. In
Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 39–46, Salt
Lake City, Utah, 2006.

[16] D. J. MacDonald and K. S. Booth. Heuristics
for ray tracing using space subdivision.Visual
Computer, 6(3):153–166, 1990.

[17] J. Mahovsky. Ray Tracing With Reduced-
Precision Bounding Volume Hierarchies. PhD
thesis, University of Calgary, 2005.

[18] B.C. Ooi, R. Sacks-David, and K.J. McDon-
nel. Spatial k-d-tree: An indexing mechanism
for spatial databases. InIEEE International
Computer Software and Applications Con-
ference (COMPSAC), pages 433–438, Tokio,
Japan, October 1987.

[19] S. Parker, W. Martin, P.-P. J. Sloan, P. Shirley,
B. Smits, and C. Hansen. Interactive ray trac-
ing. In Symposium on Interactive 3D Graph-
ics, pages 119–126, April 1999.

[20] M. Pharr and G. Humphreys. Physically
Based Rendering: From Theory to Implemen-
tation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2004.

[21] Stefan Popov, Johannes Günther, Hans-Peter
Seidel, and Philipp Slusallek. Stackless
kd-tree traversal for high performance GPU
ray tracing. Computer Graphics Forum,
26(3):415–424, September 2007. (Proceed-
ings of Eurographics).

[22] A. Reshetov, A. Soupikov, and J. Hurley.
Multi-level ray tracing algorithm.ACM Trans-
actions on Graphics, 24(3):1176–1185, 2005.

[23] S.M. Rubin and T. Whitted. A 3-dimensional
representation for fast rendering of complex
scenes. InSIGGRAPH ’80: Proceedings

of the 7th annual conference on Computer
graphics and interactive techniques, pages
110–116, New York, NY, USA, 1980. ACM
Press.

[24] P. Shirley and R.K. Morley. Realistic Ray
Tracing. A. K. Peters, Ltd., Natick, MA, USA,
second edition, 2003.

[25] C. Wächter and A. Keller. Instant Ray Trac-
ing: The Bounding Interval Hierarchy. In
T. Akenine-Möller and W. Heidrich, editors,
Rendering Techniques 2006 (Proc. of 17th Eu-
rographics Symposium on Rendering), pages
139–149, 2006.

[26] I. Wald. Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Universität
des Saarlandes, January 2004.

[27] I. Wald, C. Benthin, M. Wagner, and
P. Slusallek. Interactive rendering with co-
herent ray tracing. Computer Graphics Fo-
rum (Proceedings of EUROGRAPHICS 2001,
20(3):153–164, 2001.

[28] I. Wald, S. Boulos, and P. Shirley. Ray Tracing
Deformable Scenes using Dynamic Bounding
Volume Hierarchies. ACM Transactions on
Graphics, 26(1):1–18, 2007.

[29] I. Wald, T. Ize, A. Kensler, A. Knoll, and S.G.
Parker. Ray tracing animated scenes using co-
herent grid traversal. InProceedings of SIG-
GRAPH ’06, pages 485–493, New York, NY,
USA, 2006. ACM.

[30] I. Wald, W.R. Mark, J. G̈unther, S. Boulos,
T. Ize, W. Hunt, S.G. Parker, and P. Shirley.
State of the art in ray tracing animated scenes.
In D. Schmalstieg and J. Bittner, editors,STAR
Proceedings of Eurographics 2007, pages 89–
116. The Eurographics Association, Septem-
ber 2007.

[31] I. Wald, T.J. Purcell, J. Schmittler, C. Benthin,
and P. Slusallek. Realtime Ray Tracing and
its use for Interactive Global Illumination. In
Eurographics State of the Art Reports, 2003.

[32] Sven Woop, Gerd Marmitt, and Philipp
Slusallek. B-KD Trees for Hardware Acceler-
ated Ray Tracing of Dynamic Scenes. InPro-
ceedings of Graphics Hardware, pages 67–77,
2006.

[33] M.R. Zuniga and J.K. Uhlmann. Ray
queries with wide object isolation and the de-
tree. Journal of Graphics Tools, 11(3):27–45,
2006.

