Ray Tracing with the Single Slab Hierarchy

Martin Eisemann, Christian Woizischke, Marcus Magnor

Computer Graphics Lab, TU Braunschweig
Email: {ei semann, magnor }@g. t u- bs. de, christi an@wi zi schke. de

Abstract previous hybrid schemes.

The remainder of the paper is organized as fol-
Bounding volume hierarchies have become a verjows. In Section 2 we give a short overview of
popular way to speed up ray tracing. In this pa-common acceleration data structures to speed up ray
per we present a novel traversal and approximatiofracing. We assume that the reader is familiar with
scheme for bounding volume hierarchies, which ishe basic principles of ray tracing [8, 24, 20]. Sec-
comparable in speed, has a very compact traversgibn 3 introduces our new acceleration data struc-
algorithm and uses only 25% of the memory, com+ure, whose performance is evaluated in Section 4.
pared to a standard bounding volume hierarchy. We conclude our paper in Section 5.

1 Introduction 2 Related Work

Ray tracing is one of the fundamental methods int is obvious that intersecting every ray with every
computer graphics for image synthesis and has beesbject in the scene is barely efficient. Accelera-
studied for more than three decades. While ray traction data structures can be used to exclude most of
ing has been used mainly for offline rendering in thethe objects from actual intersection testing. Large
early days, recent advances in this field allow foramounts of research has been done on finding ef-
real-time rendering as well [19, 27]. ficient representations for these acceleration data
The biggest gain in efficiency is achieved by us-structures for ray tracing. Good surveys can be
ing acceleration data structures which lower thefound in [1, 24, 31] and [30]. For brevity we can
complexity of tracing rays from linear to logarith- only mention some seminal and recently published
mic on the average. For a long time, kD-trees wergyork in this field.
supposed to be the best choice for these acceleration The broader class of these data structures can be
data structures [27, 22]. But recently Bounding Vol-divided into two main classesSpace partitioning
ume Hierarchies (BVH) and hybrids have becomeandobject lists partitioning, which we will briefly
increasingly more popular, due to their versatility describe in the following.
and lower memory footprint [15, 25, 10, 28, 9].
However for rather complex scenes with millions
of triangles, even when using BVHs, memory con-
sumption can become a limiting factor. Approxi- The space of the scene, containing all objects, is
mation schemes exist [17, 3], but usually include asubdivided into disjoint volume elements (voxels).
computational overhead. Efficiency is achieved by testing the ray in an in-
In this paper we present a new hierarchical acceltelligent way against these elements and the con-
eration data structure, which is comparable in pertained geometry, preferably in a front-to-back order,
formance to highly optimized BVH ray tracers, but if the element was pierced by the ray. While able
that uses only 25% of the memory of a BVH, allow- to achieve high performance, some disadvantages
ing for more complex scenes to be rendered. Ware inherent. Multiple references to the same object
will show that this data structure can be easily in-are needed if it overlaps with more than one vol-
tegrated into existing ray tracing systems and has ame element. This requires an intelligent mailbox-
very simple and efficient traversal algorithm simi-ing to prevent multiple intersection tests with the
lar to kD-trees, without any of the drawbacks fromsame object and induces larger memory footprints.

2.1 Space Partitioning

VMV 2008 O. Deussen, D. Keim, D. Saupe (Editors)

Space partitioning schemes are also generally moreompact representation, overall memory consump-
complicated to update, e.g., if dynamically chang-tion can become several times as high as object lists
ing scenes need to be rendered. partitioning schemes [25].

Uniform Grids by Fujimotoet al. [5] dividethe 22 Object Lists Partitioning
scene into regular, or uniform, disjoint but con-
nected voxels. Using a fast 3DDDA algorithm a ray!nstead of subdividing space, one could also sub-
can be sent through this grid and one needs to te§ivide the objects into different, possibly overlap-
only the objects contained inside the pierced voxels?ing, bounding volumes (BV). Rays are first tested
Its simplicity is also attractive for ray tracing dy- against these BVs and only if a hit is found, then
namic scenes [29] as the creation of the grid can bihey are tested against the contained geometry. Ef-
achieved by fast rasterization of the objects. Howdiciency is gained, as testing a ray against these BVs
ever, this scheme suffers severely from traversings simpler than the triangle tests.
empty voxels if the scene contains irregularly dis-
tributed objects. This can be alleviated by introduc-Bounding Volume Hierarchies , first proposed
ing hierarchical grids or macro cells, but switchingpy Rubin and Whitted [23] and Kay and Kajiya
betWeen these |eVe|S iS eXpenSiVe. Gl’idS are hardm:g], Carry this idea further by Creating a hierar-
usable for more complex scenes, as these requigghy of bounding volumes. The bounds of every
finer grids in order to limit the number of objects node in this tree are chosen so that it exactly bounds
in the voxels, which on the other hand intl’oduceﬁa” the nodes in the Corresponding subtree and ev-
a larger traversal overhead plus very high memoryyry |eaf node exactly bounds the contained geom-
consumption. etry. If a ray misses a BV in this tree structure,
the whole subtree can be skipped. Tracing rays
Octrees have been introduced as a space partiin front-to-back order becomes a little bit more
tioning scheme by Glassner [7]. The scene is endifficult with BVHs when compared to space par-
closed by a voxel which is recursively subdividedtitioning schemes, but the advantages often out-
into eight disjoint child nodes of equal size. This ac-weigh the drawbacks: memory requirements are
celeration scheme adapts better to the scene conteiltvays directly proportional to the number of ob-
than the uniform grid. But adaptation and renderingects in the scene, each object is referenced exactly
is comparably slow to other acceleration data struconce and consequently no mailboxing is necessary.
tures. Therefore octrees are usually only used foBVHSs are efficient (it has been shown by several
special ray tracing applications as in [14], but sel-authors [10, 15, 28, 9], that BVHs can become al-
domly in real-time ray tracers for arbitrary scenes. most as efficient as kD-Trees) and versatile when it
comes to updating a BVH, e.g. for dynamic scene

Binary Space Partitioning schemes recursively changes. These advantages have made them very

subdivide space into two half-spaces using arbitrarfittractive for real-time ray tracing during the last
planes [2, 12, 6]. If the splitting planes are cho-Years[28, 9,11, 15].
sen carefully, this effectively reduces the drawbacks
of the formerly mentioned acceleration data strucMemory Reduction Even though BVHs already
tures. However, it is not known how to choose theseneed only a relatively low amount of memory com-
planes in an optimal way. pared to other acceleration data structures (kD-trees
kD-trees restrict the splitting planes to be orthog-may need up tadx the amount of a BVH [25, 9]),
onal to the world coordinate axes. This way traver-several approaches exist which reduce the memory
sal becomes easier, less computationally intensiveonsumption even further. Mahovsky and Wyvill
and numerically more robust. Even though kD-[17] investigated a hierarchical scheme for encod-
trees are arguably the fastest way to ray trace stating BVHs that reduces the storage requirements by
scenes, [27, 31, 26, 21], they suffer from the lack63%-75% but introduces a computational overhead
of adaptability for dynamic scenes, plus they in-which can be alleviated by tracing bundles of rays,
cur an a-priori unknown memory footprint. Even if possible. Clineet al. [3] take a similar approach.
though single nodes in a kD-tree allow for a veryThey also use a hierarchical encoding scheme, com-

pressing a node to 12 bytes, plus a high branchingf a single type of node, the traversal is much sim-
factor of 4 and implicit encoding of the child pointer pler. It uses only 8 Bytes per node, i.e. 25% of the
due to a heap like data structure, typically a BVHmemory needed by a standard BVH without intro-
node needs 32 bytes. Their approach is slower thatucing any efficiency drawbacks. Often it is even
a standard BVH and is limited to an object basedaster than a standard BVH.

median split technique for creating the BVH, which

is known to be one of the slowest techniques for ray,

tracing. 3 TheSingle Slab Hierarchy

We propose a simple yet efficient acceleration data

Hybrid techniques have been thoroughly investi- structure for ray tracing which offers favorable
gated during the last years which try to combine thespeed and very low memory consumption. The sin-
benefits of spatial and object list partitioning. Mostgle slab hierarchy (SSH) is a binary object partition-
of them are a deviation of the Bounding Slab Hier-ing scheme, resulting in a binary tree. Similar to
archy by Kay and Kajiya [13]. Originally at least BVHs a ray traverses this tree in a top-down fash-
six bounding planes were used (the standard BVHon. If it does not intersect one of the nodes, the
uses this scheme, where the bounding planes arhole subtree can be skipped (see Sect. 3.4). In-
perpendicular to the world coordinate axes), so thastead of representing BVs with all six planes we
they formed a closed hull around the object. Mostmnake use of the enclosing characteristics of BVHs
hybrid approaches store a set of two parallel planeto conservatively estimate a BV by representing it
that partition the current node’s bounding volumewith only one bounding plane. One can think of
into two, potentially overlapping, halves. By sav- this as carving away parts of the BV in every subdi-
ing the current active ray interval, one is able tovision step.
estimate a hit or miss of a ray with these sparsely
represented bounding volumes. The data structur. ;
looks like a kD-Tree but still has all the benefits 81 Properties of BVHs
from a BVH. This kind of hybrid was independently The reason why BVHs are effective is that when-
developed by several researchers [25, 10, 32, 33bver arayF = o+ t - d misses the bounding box of
While Wachteret al. [25] focused on fast construc- a node, the complete subtree can be skipped during
tion of their bounding interval hierarchy, Woa the traversal. This enclosing property can be use-
al. [32] showed a hardware implementation of aful in two ways for our SSH. First, we can define
similar structure, called b-kD tree. The DE-tree inactive ray segments,, andt,.;: where a ray enters
[33] is very similar to the b-kD tree but includes and leaves the bounding box. Given two B3
a wide object isolation to prevent larger objectsand B2 and corresponding ray segmens, t..:,
from plugging the hierarchy, by keeping them att?, andt2,, for an arbitrary ray which pierces both
higher levels. Havraret al. [10] adapted a ver- BVs thent}, < t2, < t2,; < ti,; if B* encloses
sion of the skd-tree, originally proposed by @i B2, see Fig.1. This property is essential for any hy-
al. [18], which is similar to the one proposed in brid BVH method, which approximates a node by
[25]. As most of the other approaches have difficul{ess than its six sides.
ties dealing with empty spaces and need to include Another beneficial property concerning effi-
empty nodes, Havrast al. extended them to H- ciency is that the BVs of the children of a node will
trees, which is an skd-tree with an additional nodeshare some of the bounding slabs with its parent.
type, the bounding node, a simple six-sided boundn fact, one can prove that at least six or more out
ing volume, to cut away empty spaces. Even thouglaf the twelve planes by which the two children are
this solves the empty spaces problem, it complicategefined, will coincide with the bounds of the par-
the traversal and creation of the hierarchy, as onent node. Testing these against a ray is redundant.
has to deal with different kinds of nodes. Interestingly if a bounding plane of a child node is

In the following we present an approach that doesiot equal to the same plane of its parent, it will be
not have this empty spaces problem as we always its sibling. Or in other words, every plane which
carve away the side which is most beneficial for thebounds the ancestor node will also bound at least
surface reduction of the nodes, plus due to the usene of its child nodes. So if one tries to approximate

L /4 vious hybrid approaches the axis of the splitting
plane, used for subdividing the object list into the
two child nodes, was the same axis as the one used
for bounding the nodes. As described in 3.1, we
observed that restricting ourselves to this behaviour

2., prohibits flexibility and therefore efficiency, as this
might lead to problems with empty spaces where ei-
ther empty nodes [25] or special nodes [10] have to
be inserted in order to deal with this. Havreral.

N reported performance loss of more than an order of
Lin magnitude if one does not deal with these cases. We
define an outer and inner half space for each of the
bounding planes, to define, on which side the inte-
rior of the node is placed. This gives us the needed
/ ! flexibility to carve away empty space from any side
" of the bounding box. Therefore no additional nodes

. . need to be added. This is also depicted in Fig. 3.
F 1: Th | f BVH
'gure e enclosing property o S ensures A complete SSH node contains the position of the

that a ray always pierces first, or at least at the same i | inter t ir of child d
time the ancestor node before it can intersect th@°UNdINg P'ane, a pointerto a pair of chiidren an

children, and will always leave the children nodes>°Me additional flags. It can be represented with

before or at the same time it leaves the ancesttﬂ”s'[8 bytes (see Fig. 2). Note the resemblance to
node. D-Tree nodes [26].

We use the lower two bits to indicate the axis (00:

X, 01: y, 10: z) to which the bounding plane is per-

BVs by representing them with less than its usuapendicular to or whether it is a leaf node (case 11).
six planes it is crucial not to choose the same boundone bit indicates whether the included geometry is
ing planes for both children. Otherwise redundanto the left or right of the bounding plane; the other
intersection tests are the consequence. Methods likside is empty respectively. We also use two addi-
[32, 10, 33] do not pay attention to this or do nottjonal bits to save the traversal axis to define which

provide the possibility to change it. node a ray should visit first during traversal, accord-
ing to its signs. For a four byte integer we still have
3.2 DataStructure 27 bits left for encoding the index, so up1s4 mil-

_ o ~ lion triangles are encodable or even more if we al-
Instead of storing the complete six-sided Boundingow more than one triangle per leaf node, note that
Box for every node in our tree, the idea of the sin-this number has to be predefined before construc-

gle slab hierarchy is to use only one single plangjon and is not saved explicitly per leaf node.
perpendicular to either the, y or z-axis. In pre-

3.3 Construction of the Hierarchy

#pragma align (8)

struct SSHNodg Our construction is in fact quite similar to BVH

float plane; construction methods. All the usual construction
union{ _ _ schemes can be applied such as spatial median cut
int firstChildNodelD; //inner nodes or surface area heuristic (SAH). Therefore our SSH

int firstTrianglelD; //leaf nodes

/I bit 0..1: axis (x,y.z) or leaf is also a binary tree. To find the optimal bounding

plane for a node we make use of the SAH [16]. The

/1 bit 2: interior left or right - ! s
/I bit 3..4: traversal axis probability P of an arbitrary ray”, piercing the root
} node B?, to hit an interior nodeB’ is exactly the
b ratio of the surface areas

S il S(B'
Figure 2: 8 byte representation of the SSH node. P(FN B'[FN B°) = S((BO)) (€]

splitting plane splitting plane splitting plane

— —

[/

bounding planes bounding planes
@ (b) (©)

Figure 3: Bounding Plane adjustment. (a) Ancestor volume containindgpj@itts is split along the x-axis
(splitting plane depicted by the dashed line). (b) Resulting volumes if splittidgannding planes are set
to the same axis. (c) Our approach can choose the best plane foofehehchildren, resulting in smaller
bounding boxes. The approximated bounding volumes in gray and ¢secHhounding planes in blue and
orange are shown slightly displaced for better readability.

To find the optimal bounding plane for a node, we3.5 Extension to dynamic scenes

use the calculated bounds of its ancestor node. For

every side of the BV we set the bounding plane ain fact, our single slab hierarchy shares many prop-

tight as possible to the included objects. We thenertles with BVHs. Therefore we can easily refit our

calculate the new surface area and keep that bouna'-ngle slab hle_rarchy to adapt itto cha_nges in the
ing plane which reduces the surface area the mo%eom_etry. . This can be dong in a similar way as
. escribed in [32] or [28]. A simple bottom-up ap-
(see Fig. 3 and 5). . . s -
proach can be applied using trivial min/max opera-

tions to adapt the bound of the nodes. The structure
34 Traversal of the hierarchy remains unchanged. This is suf-
Intersecting a ray with the single slab hierarchyf'c'ent for most coherent animations, e.g. skinned
resembles the traversal of a BVH, but with themMeshes. .)
complexity of kD-Tree traversal. In each traversal 10 handle arbitrary movements one could easily
step we maintain the active ray Segment, tous), adgpt the method of Izet al. [11] .where the BVH is
which depicts the entry and exit point of the ray ang'efitted while one core ofa multl-co_re PC (_:onstan_tly
the current node. This is first initialized {6, co), rggenerates the hierarchy and switches it once it is
then clipped to the scene bounding box and updateW"Shed'
during traversal. For each traversed node we sim-
ply calculate the distance to its bounding plane andl Results and Discussion
compare it to the active ray segment. Depending on
the interior bit, which encodes on which side of theWe implemented our presented SSH scheme into
bounding plane the geometry is, and the ray direca SIMD Ray Tracer which usex x 2-ray-bundle-
tion we can create a very simple intersection algotracing to exploit ray coherence and a BVH-based
rithm (see Fig. 4). ray tracer following [15] for comparison, includ-

We increase the likelihood of traversing the chil-ing 2 x 2-ray-bundle-tracing, a spatial median cut
dren in front-to-back order by including an orderedscheme for construction, ordered traversal and us-
traversal scheme, as proposed in [17], which deing 32 byte of data per node.
termines the order in which the children of a node Both are state-of-the-art and achieve interactive
should be tested. We also implemented the algoframe rates on a single desktop PC. For our test
rithm presented in Fig. 4 as an iterative version, byscenes we evaluated only the first intersection and
using a stack to save the nodes and ray segments.used a simple eyelight shader. We are aware of

/I reverse is true if the ray direction is negative,

/I t_hit is the distance to the currently closest intersection

bool intersectSSH (Ray& ray, mask reverse[3], SSHNedeode,
float& t_hit, float& t_near, float& t_far)

int axis = node>getSlabAxis ();
float t = (float(node=>plane) — ray.origin[axis]) / ray.dir[axis];

if (node=>geometrylsLeft())X
t_.near = (reverse[axis]| (t <= t_near)) ? tnear : t; // increase t_near
t_far = (reverse[axis] & (kt_far)) ? t : t-far; // decrease t_far

}

else {
t_near = (reverse[axis] & (tt_near)) ? t : tnear; // increase t_near
t_far = (reverse[axis]| (t>=t_far)) ? t.far : t); [// decrease t_far

}

if ((t_near> t_far) || (t-near> t_hit)){
return false;

}

if (node—>isLeaf ()){
return intersect geometry;

}

traverse children;

Figure 4: Traversal scheme for the single slab hierarchy.

methods which exploit ray coherence to a higheplane, but this is rather negligible. The number of
degree, as in [28, 22], but for a fairer comparisonfraversed nodes and triangle intersections is larger
we did not use them. For testing we used a PQGor the SSH as only approximated BVs are used in
equipped with an Intel Core 2 Quad Q6600 2.4GHzessence, but this is alleviated by the simpler traver-
Only one core was used for the time measurementsal algorithm. Only two times more nodes are tra-
Our current subdivision scheme is a spatial medianersed with the SSH than with a complete BVH, but
cut [24, 15] which provides good rendering perfor-the intersection test is approximately six times less
mance for almost all scenes. The nodes are subdéxpensive. Due to the approximation more trian-
vided until each leaf node consists of only one tri-gles have to be intersected, but as one can see this
angle. Note that the structure of the BVH and theis usually only one more per ray. Results are listed
SSH is essentially the same, only the representatioin Table 1.

of the nodes has been changed.

We have tested this system on scenes with varys Conclusion
ing complexity to measure the performance and
memory consumption of our approach. As oneWe have presented a new acceleration data structure
can see from Table 1 the performance of the SShwith applications to real-time ray tracing. By relax-
is comparable to a state-of-the-art BVH ray tracerjng the standard bounding volumes to a single slab
even faster in some cases, while only 25% of thave achieved memory savings of 75% compared to
memory is needed for the acceleration data strucstandard BVHs without loss in efficiency. And even
ture. This memory saving is important because withmore sophisticated variations, like the Bounding In-
even more complex models the scene might noterval Hierarchy [25] use at least 50% more memory
fit into main memory anymore if using kD-Trees compared to our approach. This allows for render-
or BVHs. Built times are slightly higher for the ing of much more complex models without using
SSH as we need to search for the best boundingut-of-core techniques.

Method Nt Ny Tec Tr S(TR) Mem

] Scene - Power Plant - 12,748,510 triangke) x 480 |

BVH 4355 424 2883s 331s kO 778.11MB

SSH 80.23 5.34 289s 2.73s 1:22 194.53MB

] Scene - Happy Buddha - 1,087,716 triangkes) x 480 |

BVH 645 063 193s 054s IO 66.39MB

SSH 1414 153 198s 0.59s 0281 16.60MB

] Scene - Dragon - 871.414 trianglég) x 480 |

BVH 1047 095 155s 0.84s 10 53.19MB

SSH 2321 211 157s 0.89s 04 13.30MB

] Scene - Fairy 1st frame - 174,117 triangle$) x 480 |

BVH 2652 253 0.30s 206s Ix0 10.63MB

SSH 4551 423 031s 1.70s 121 2.66MB

] Scene - Toys - 11.141 triangle®i0 x 480 |

BVH 2957 131 0.02s 208s &0 0.68MB

SSH 46.85 3.24 0.02s 1.57s 183 0.17MB

| Scene - Bunny - 69.451 trianglest0 x 480 |

BVH 8.77 055 0.09s 0.66s 20 4.24MB

SSH 18.01 131 0.10s 0.65s 103 1.06MB

Table 1: Comparison of our new technique (SSH) with a BVH implementatiavfing [15], using a
simple shader an?l x 2 (SSE accelerated) ray bundles. Measurements have been madintel &ore 2
Quad Q6600 2.4GHz with 4GB of main memory. Only one core was usdtiddime measurementair

is the average number of traversed nodes perNayis the average number of ray-object intersections per
ray, Tc is the total time needed for construction of the hierar@hyis the total time needed for traversal,
s(Tr) is the speedup achieved by the SSH with respect to the BVH, Mem is the mersage of the
acceleration data structures in megabytes, excluding the triangle data.

void createSSH(TriangleList tris , References
AABB parent,
SSHNode& nodej

AABB bounds(tris); // bounding box [1] J. Arvo and D. Kirk. A survey of ray tracing
float bestSurface = HUGNAL;

X X R acceleration techniques. In Andrew S. Glass-

int bestSide = 0; . . .

for_all (sides of the AABBY ner, editor,An Introductnor_w to Ray Tracing,
AABB temp = parent; pages 206—208. Academic Press, 1989.
temp.side = bounds.side; [2] J.L. Bentley. Multidimensional binary search
if (surface (temp)< bestSurface] trees used for associative searchin@om-

bestSurface = surface (temp);

bestSide = side: munications of the ACM, 18(9):509-517,

b} September 1975.
node.boundingPlane = bounds.bestSide; [3] D. Cline, K. Steele, and P. Egbert.
if(”iifizil\(l)j n()){ . y Lightweight Bounding Volumes for Ray
createLeafNode ();return; ; ; ; .
TriangleList leftTris, rightTris; ;rlagggéjoumaj of graphic tools, 11(4):61~
subdivide (tris , leftTris, rightTris); ’ ' .
/1 subdivide using a common scheme, [4] H. Dammertz, J. Hanlka, and A. Keller. Shal-
/1 like SAH or median—cut low bounding volume hierarchies for fast simd
parent.bestSide = bounds.bestSide; ray tracing of incoherent rays. Computer
createSSH r(]:)%';t Tfri e r?i"’l‘(rﬁ\lnot deiD): Graphics Forum (Proceedings of EGSR 2008),
createSSH(rightTris , parent, ’ 27(4), 2008.
node . firstChildNodelD +1); [5] A. Fujimoto, T. Tanaka, and K. lwata. Arts:
} Accelerated ray-tracing systemEEE Com-
pututer Graphics and Applications, 6(4):16—

26, April 1986.

D. S. Fussell and K. R. Subramanian. Fast ray

tracing using K-d trees. Technical Report CS-

TR-88-07, Austin, TX, USA, 1 1988.

t [71 A. S. Glassner. Space subdivision for fast ray

tracing. |[EEE Computer Graphics and Appli-

cations, 4(10):15-22, October 1984.

A. S. Glassner, editorAn Introduction to Ray

Tracing. Academic Press, first edition, 1989.

[9] J. Guinther, S. Popov, H.-P. Seidel, and

P. Slusallek. Realtime ray tracing on GPU

with BVH-based packet traversal. Rroceed-

ings of the | EEE/Eurographics Symposium on

Interactive Ray Tracing 2007, pages 113-118,

September 2007.

V. Havran, R. Herzog, and H.-P-Seidel. On

Fast Construction of Spatial Hierarchies for

Ray Tracing. InlEEE/Eurographics Sympo-

sium on Interactive Ray Tracing 2006, 2008.

[11] T. Ize, I. Wald, and S.G. Parker. Asyn-
chronous bvh construction for ray tracing dy-
namic scenes on parallel multi-core architec-
tures. InProceedings of the 2007 Eurograph-

6 Acknowledgements ics Symposium on Parallel Graphicsand Visu-

alization, pages 101-108, 2007.

Our thanks go to the University of North Carolina [12] M. R. Kaplan. Space tracing a constant time

at Chapel Hill, the Stanford University and the Uni- ray tracer. InSate of the Art in Image Synthe-

versity of Utah for providing us with the 3D models. sis (Course Notes on ACM SIGGRAPH 85,

Figure 5: Creation scheme for the single slab hier- 6]
archy.

Looking at the statistics in Table 1, the curren
bottleneck is the slightly more incoherent memory
access when compared to standard BVHs, as more
nodes need to be accessed. We strongly believe thalf]
this problem will disappear with newer hardware ar-
chitectures.

For future work we intend to implement more so-
phisticated subdivision schemes, like the SAH [16]
as well as acceleration schemes [22, 28] to find the
first intersections and a GPU version of our ray
tracer [9] to improve rendering performance even
further. We would also like to try discretization [10]
schemes [17] or 4-ary BVH [4] to save even more
memory. As the single slab hierarchy is relatively
similar to BVHs in its structure, current techniques
for ray tracing of dynamic scenes [30] could be
adapted as well.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

volume 11, pages 149-158, July 1985.

T. L. Kay and J. T. Kajiya. Ray tracing com-
plex scenes. '81GGRAPH '86: Proceedings
of the 13th annual conference on Computer
graphics and interactive techniques, pages
269-278, New York, NY, USA, 1986. ACM
Press.

A. Knoll, I. Wald, S.G. Parker, and C.D. [25]

Hansen. Interactive Isosurface Ray Tracing
of Large Octree Volumes. IRroceedings of
the 2006 |EEE Symposium on Interactive Ray
Tracing, pages 115-124, 2006.

C. Lauterbach, S.-E. Yoon, D. Tuft, and

D. Manocha. RT-DEFORM: Interactive Ray [26]

Tracing of Dynamic Scenes using BVHSs. In
Proceedings of the 2006 |EEE Symposium on

Interactive Ray Tracing, pages 39-46, Salt [27]

Lake City, Utah, 2006.

D. J. MacDonald and K. S. Booth. Heuristics
for ray tracing using space subdivisiovisual
Computer, 6(3):153-166, 1990.

J. Mahovsky. Ray Tracing With Reduced-
Precision Bounding Volume Hierarchies. PhD
thesis, University of Calgary, 2005.

B.C. Ooi, R. Sacks-David, and K.J. McDon-

nel. Spatial k-d-tree: An indexing mechanism[29]

for spatial databases. IEEE International
Computer Software and Applications Con-
ference (COMPSAC), pages 433-438, Tokio,
Japan, October 1987.

S. Parker, W. Martin, P.-P. J. Sloan, P. Shirley,[30]

B. Smits, and C. Hansen. Interactive ray trac-
ing. In Symposium on Interactive 3D Graph-
ics, pages 119-126, April 1999.

M. Pharr and G. Humphreys. Physically
Based Rendering: From Theory to Implemen-
tation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2004.

Stefan Popov, Johannedi@her, Hans-Peter
Seidel, and Philipp Slusallek. Stackless
kd-tree traversal for high performance GPU
ray tracing. Computer Graphics Forum,
26(3):415-424, September 2007.
ings of Eurographics).

A. Reshetov, A. Soupikov, and J. Hurley.
Multi-level ray tracing algorithmACM Trans-

(Proceed-

actions on Graphics, 24(3):1176-1185, 2005. [33]

S.M. Rubin and T. Whitted. A 3-dimensional
representation for fast rendering of complex
scenes. INSIGGRAPH '80: Proceedings

(24]

(28]

(31]

(32]

of the 7th annual conference on Computer
graphics and interactive techniques, pages
110-116, New York, NY, USA, 1980. ACM
Press.

P. Shirley and R.K. Morley. Realistic Ray
Tracing. A. K. Peters, Ltd., Natick, MA, USA,
second edition, 2003.

C. Wachter and A. Keller. Instant Ray Trac-
ing: The Bounding Interval Hierarchy. In
T. Akenine-Mbller and W. Heidrich, editors,
Rendering Techniques 2006 (Proc. of 17th Eu-
rographics Symposium on Rendering), pages
139-149, 2006.

I. Wald. Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Universit
des Saarlandes, January 2004.

. Wald, C. Benthin, M. Wagner, and
P. Slusallek. Interactive rendering with co-
herent ray tracing. Computer Graphics Fo-
rum (Proceedings of EUROGRAPHICS 2001,
20(3):153-164, 2001.

I. Wald, S. Boulos, and P. Shirley. Ray Tracing
Deformable Scenes using Dynamic Bounding
Volume Hierarchies. ACM Transactions on
Graphics, 26(1):1-18, 2007.

I. Wald, T. Ize, A. Kensler, A. Knoll, and S.G.
Parker. Ray tracing animated scenes using co-
herent grid traversal. IRroceedings of SG-
GRAPH ’'06, pages 485-493, New York, NY,
USA, 2006. ACM.

I. Wald, W.R. Mark, J. Gnther, S. Boulos,
T. Ize, W. Hunt, S.G. Parker, and P. Shirley.
State of the art in ray tracing animated scenes.
In D. Schmalstieg and J. Bittner, editoB8FAR
Proceedings of Eurographics 2007, pages 89—
116. The Eurographics Association, Septem-
ber 2007.

I. Wald, T.J. Purcell, J. Schmittler, C. Benthin,
and P. Slusallek. Realtime Ray Tracing and
its use for Interactive Global lllumination. In
Eurographics Sate of the Art Reports, 2003.
Sven Woop, Gerd Marmitt, and Philipp
Slusallek. B-KD Trees for Hardware Acceler-
ated Ray Tracing of Dynamic Scenes.Rro-
ceedings of Graphics Hardware, pages 67—77,
2006.

M.R. Zuniga and J.K. Uhlmann. Ray
queries with wide object isolation and the de-
tree. Journal of Graphics Tools, 11(3):27-45,
2006.

